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COMMENT 

Generalised depinning transition in a solid-on-solid model? 

W F WolffS and N M SvrakiC9 
Institut fur Theoretische Physik, Universitat zu Koln, D-5000 Koln 41, West Germany 

Received 23 July 1984 

Abstract. The pinning of a domain wall by a row of weakened bonds in the interior of’ a 
planar k ing  ferromagnet is studied in the solid-on-solid limit. Analysing a continuum 
version of the model we show that a pinning-depinning transition occurs whenever the 
couplings on the two sides of the defect are different. The roughening transition found by 
Abraham is contained as a special case. 

Critical behaviour near defect planes and free surfaces in an otherwise homogeneous 
system has been the subject of much recent scrutiny. In particular, in two-dimensional 
Ising models, such defects have been studied in the context of surface and interface 
phenomena (Fisher and Ferdinand 1967, Watson 1972, Fisher and de Gennes 1978, 
Burkhardt and Eisenriegler 1981), pinning-depinning transitions (Abraham 1980, 
1981a, b, Burkhardt 1981,Chalker 1981, Kroll 1981,Chuiand Weeks 1981,van Leeuwen 
and Hilhorst 1981) (in D = 3 this was studied by Pandit et a1 (1982); see also Nakanishi 
and Fisher (1982)), and non-universal behaviour associated with an internal defect 
line (Bariev 1979, McCoy and Perk 1980). The purpose of this comment is to propose 
a more general type of depinning transition and calculate the corresponding phase 
diagram. Specifically, if the defect is viewed as a mediator between two differently 
ordered physical systems, then the depinning transition is a transition in which one 
system begins to promote its own order into the other system. This we regard as a 
generalisation of the depinning transition concept which, to our knowledge, has not 
been studied before. 

In order to gain further orientation and to make our statement of purpose more 
precise it is helpful to first define a model. Consider a two-dimensional, square, 
ferromagnetic, nearest-neighbour Ising model with a ‘seam’ of defect couplings, as 
shown schematically in figure 1. On one side of the defect the couplings have values 
K ,  = J,/ kBT, and on the other, values K ,  = J J  kBT The defect couplings have values 
Kd = Jd/kBT. Generally, we will assume that K ,  f K 2  and in this respect our model 
differs from those usually studied (Fisher and Ferdinand 1967, Watson 1972, Burkhardt 
and Eisenriegler 1981, Abraham 1980, 1981a, b ;  for a recent review see Fisher 1984). 
Our model is most properly thought of as a model of two thermodynamic systems, K ,  
and K2,  interacting via Kd. However, the connection with the models previously 
studied can be made by taking antiperiodic boundary conditions and, for example, 
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Figure 1. Couplings in the two Ising models interacting via defect couplings: thick lines, 
K , ;  thin lines, K , ;  dotted lines, K, .  

KI = CC, K 2  < 00, Kd < K, .  In this case we have a ‘seam’ of (weakened) defect couplings 
K d  next to the fully ordered system K1 which acts as a ‘hard surface’. By setting 
K ,  = aK,, where a is some parameter 0 < a < 1, we get the model precisely analogous 
to that studied by Abraham (1980, 198 la, b) in the context of the depinning transition. 
For this model it has been exactly shown by Abraham (1980,198 la, b) that the interface, 
created by the boundary conditions, remains pinned to the defect at sufficiently low 
temperatures but, as the temperature is increased above a certain value T,(u), the 
interface depins and, in the thermodynamic limit, starts to wander infinitely far away 
from the defect. Exactly at the depinning transition temperature TR(a) the defect 
specific heat exhibits a jump discontinuity induced by the extra degrees of freedom 
available for the depinning interface. However, if the defect is internal (that is, not 
located at the boundary) then the interface will remain pinned to the defect at all 
temperatures below the critical temperature T, (Abraham 1980, 1981a, b). Note also 
that the singularity in the surface specific heat (Fisher and Ferdinand 1967, Watson 
1972) at T, is the special case of the depinning transition at T,(u = 0) = T,. 

Now let us consider the general case K I  # K 2  when both K1 and K 2  are finite 
(without loss of generality we shall take K,< K1 throughout this work). Furthermore, 
let Kd = aK2 ,  with parameter a as defined above, and let us consider a situation when 
K , >  K ,  (i.e., both systems K ,  and K 2  are ordered). One can think of the system K ,  
as being ‘more ordered’ than the system K , .  The principal result of this work is the 
following: at sufficiently low temperatures the interface between the two regions will 
be pinned to the defect. However, there is a temperature T,(u) at which the interface 
depins into the less ordered region K,, in a manner precisely analogous to the depinning 
transition studied by Abraham (1980, 1981a, b). Note that, even though the defect is 
internal in our model, the depinning transition will still take place provided K I  # K2. 
The depinning transition temperature T,(a) will also depend on the ratio K , /  K 2  = a, 
a > 1, and in what follows we shall use the notation T,(u, a )  to denote this dependence 
explicitly. At this temperature the ‘more ordered’ system K I  starts promoting its own 
order into the ‘less ordered’ system K2. Clearly, when K1 = K,,  the two systems are 
‘equally ordered’ and the depinning transition will not take place, in agreement with 
the exact result of Abraham (1980, 1981a, b). Simply, in this case the interface cannot 
‘depin’ because of the symmetric situation on two sides of the defect. 

Quantitatively, the generalised depinning transition can be studied in several ways, 
including exact calculations which are quite involved technically (Wolff 1983), renor- 
malisation group methods (Svrakik 1982), or in the solid-on-solid ( S O S )  limit (Burkhardt 
1981, Chalker 1981, Kroll 1981, Chui and Weeks 1981, van Leeuwen and Hilhorst 
1981). Of these, the SOS calculation is most transparent since the problem can be 
reduced to the elementary quantum-mechanical problem of finding the bound states 
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of a particle in a well. In the rest of this comment the SOS calculation of the depinning 
transition phase diagram T,(a, a )  is illustrated. Our main result is given by equation 
(12), and is shown in figure 2 .  

T 

I 

0 1 
0 

Figure 2. Depinning transition temperature T,(a, a) 
( 12) shown as a function of a for various values of 
a. The broken curve shows Abraham’s exact result 
for a =cc. 

In the SOS limit, overhangs in the interface are suppressed and the canonical form 
of the interface energy is, (cf Muller-Hartmann and Zittartz 1977) 

where x,  denotes the perpendicular distance of the interface at the ith column from 
the defect at x = 0. The x,  vary continuously in the interval --CO < x ,  < 00. The case of 
a discrete spectrum for the x,  can also be treated exactly, but will not be discussed 
here, as the phase transition is qualitatively the same (Wolff 1983). The functions . 4 ( x )  
and B ( x )  arise from the various couplings in the system; explicitly we have 

x z o  {: x < o  
A ( x )  = 

and 
x 2  1 

(3) 

The special case of a hard surface (Abraham 1980, 1981a, b, Burkhardt 1981, Chalker 
1981, Kroll 1981, Chui and Weeks 1981, van Leeuwen and Hilhorst 1981) corresponds 
to a = ~3 or, equivalently, to the restriction x ,  2 0. 
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The transfer matrix (Huang 1963) corresponding to ( 1 )  is given by 

T(x, Y )  = exp [ -2~*( lA(x )x  - A(.Y)YI + N Y ) ) ] .  
Representing the eigenfunctions and eigenvalues of T as 

a2 I dy T(x, Y ) r L ( Y )  = ArL(x 
-m 

we find by standard arguments (Huang 
limit N + m  is given by 

F,/ N = -kBT In A, 

(4) 

( 5 )  

963) that the interface free energy F, in the 

(6) 

where A, is the largest eigenvalue of T with eigenfunction +,(x). The probability 
density P (x )  for finding the interface at a distance x from the defect is then 

~ ( x )  - exp(-2~2B(x))l+,(x)l2. (7)  

Using ( -d2/dx2+K2)  exp(-Klx-y() = 2K6(x-y)  in ( 5 ) ,  we find that +(x) satisfies 
the differential equation 

(-d2/dX2 + V(X))$(X)=O (8) 

V(x) =4K2A(x)(K2A(x)  - A - '  exp(-2K2B(x))) ( 9 )  

with 

and the boundary condition + ' ( O - )  = a+'(O+). (This boundary condition is equivalent 
to adding a 8-function constant*6(x) to V(x) in (9).) Equations (8) and (9) can be 
viewed as the one-dimensional Schrodinger equation for a particle moving in the 
potential V(x). 

From elementary quantum mechanics (Messiah 1969) one knows that (8) and (9) 
have two types of solution for x > 1 depending on whether V(x) is positive or negative, 
namely scattering solutions (Cls(x) - sin( kx + 6) with eigenvalues 

A,=4K2 exp(-2K,)/(4K,+k2) (10) 
and bound-state solutions &(x) - exp( -Kx) with eigenvalues 

A b  = 4K2 exp(-2K2)/(4K, - K'). (11)  

The resulting spectrum of the transfer operator T(x, y )  (5) is shown schematically in 
figure 3. From the eigenvalue expressions for A,(k) (10) and  ab(^) ( 1  1 )  it is evident 
that the largest A for which (8) and (9) have a solution corresponds to the most tightly 
bound state, i.e. the state with largest K ,  and, in the absence of bound states for x > 1, 
to the k = 0 scattering state. Because of ( 7 )  these two types of solution correspond to 
pinned and depinned interfaces respectively. At temperatures where the eigenvalues 
of these two types of solution become degenerate the system exhibits a depinning 
transition and the interface depins into the less ordered region K 2 .  The depinning 
temperature TR(a, a )  is found to be determined by 

2K2(exp[2(1 -a)K2]- 1)''2 

=tan-'[(l - a - '  exp[(2(1 -a)K2])(exp[2(1 -a)&]- 1)"]''2 (12) 
and is shown in figure 2. For a +CO equation (12) reduces to the special case studied 
by Burkhardt (1981) and by Chalker (1981). For a = 1 the only solution of (12) is 
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I T g  T, T S  T, T >  T, 

Figure 3. Spectrum of the transfer operator T ( x ,  y )  ( 5 ) .  The vertical bars represent the 
continuum of the scattering state eigenvalues h , ( k )  ( I O ) ;  the horizontal lines represent 
the bound-state eigenvalue &(K) ( 1 1 )  (only the largest one is shown). 

given by TR = 03, i.e. the interface remains pinned to the defect at all temperatures in 
agreement with exact results (Abraham 1980, 1981a, b). 

Since the gap between the eigenvalues A b (  K )  (1  1 )  of the bound state and A,(O) (10) 
of the k = 0 scattering state varies as ( T R  - T)' for T + TR the interface specific heat 
exhibits a jump discontinuity at the transition. One can show from (7) that both the 
mean distance (x) of the interface from the defect and the root-mean square width 
((x -(x))') diverge as (TR- T)- '  for T +  TR similar to the behaviour found by Abraham 
(1980, 1981a, b) for the special case a =CO.  The height-height correlation function 
((x, - xJ2) approaches its n + 03 limit 2((x - ( x ) ) ~ )  with an exponential tail 
exp[-constant * n * ( T R -  T)'] for T d TR and is proportional to n for T > TR. 

In summary, we have investigated the influence of an internal defect on the interface 
in a two-dimensional Ising model in the SOS limit. It was found that whenever the 
couplings on the two sides of the defect are different the interface becomes rough and 
depins for the defect into the less ordered region if the temperature exceeds a critical 
value TR( a, a ) .  The results reported above have been obtained by studying a continuum 
version of the SOS limit which is known to give a qualitatively correct picture of the 
transition for the special cases (Y = 1 and a = 03, respectively (Burkhardt 1981, Chalker 
1981, Kroll1981, Chui and Weeks 1981, van Leeuwen and Hilhost 1981). Aquantitative 
improvement can be obtained by allowing the spectrum of the x, to be discrete (Wolff 
1983). 
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